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Abstract Here we describe a new algorithm for auto-

matically determining the mainchain sequential assignment

of NMR spectra for proteins. Using only the customary

triple resonance experiments, assignments can be quickly

found for not only small proteins having rather complete

data, but also for large proteins, even when only half the

residues can be assigned. The result of the calculation is

not the single best assignment according to some criterion,

but rather a large number of satisfactory assignments that

are summarized in such a way as to help the user identify

portions of the sequence that are assigned with confidence,

vs. other portions where the assignment has some corre-

lated alternatives. Thus very imperfect initial data can be

used to suggest future experiments.

Keywords Automatic assignment � Generic spin system �
Triple resonance � Large proteins

Introduction

Presently, the backbone resonances of virtually all proteins

in solution are assigned using a combination of 3D triple

resonance NMR spectra pairs HNCA/HN(CO)CA, HNCA

CB/HN(CO)CACB, HN(CA)CO/HNCO (for perdeuterated

proteins) or HN(CA)HA/HN(COCA)HA for small prot-

eated proteins (e.g., Cavanagh et al. 2007). Similar com-

binations of experiments have been devised for the

assignments of the backbone resonances of proteins in the

solid state (e.g., Baldus 2007). Smaller or unfolded proteins

in solution are increasingly assigned using higher dimen-

sional data with similar or extended coherence pathways,

typically obtained by using projection methods on three

frequency coordinates (e.g., Atreya and Szyperski 2004).

Here, we present an automated assignment algorithm for

a combination of the ‘‘classical’’ 3D triple resonance

experiments from proteins in solution. We focus on these

3D experiments because their relative simplicity allows the

highest sensitivity per unit time, which is important for the

assignment of the larger proteins we study in our laboratory

([300 residues), which are typically soluble at 300 lM

concentration or less.

In theory, the 3D experiments provide more than suffi-

cient resolution to assign the spectra of such large proteins:

all 13Ca resonance frequencies of a 50 residue protein are

likely to be unique within an achievable 0.1 ppm precision
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(see Fig. S1); similar values hold for 13Cb frequencies

(within an achievable 0.2 ppm precision) and 13CO fre-

quencies (within an achievable 0.1 ppm precision). Hence,

if the sequence specific shifts of the Ca, Cb and CO

resonance positions may be assumed to be uncorrelated, a

combination of an HNCA/HN(CO)CA pair with HN(CA)CO/

HNCO pair should suffice to assign a 50 9 50 = 2500 res-

idue protein. Combined with Cb connectivity information

from an HNCACB/HN(CO)CACB pair, the size limit

increases further, and when the latter is combined with

chemical shift statistics which allows the distinction of 6

different amino acid groups (A; G; P; S?T; D?F?

I?L?N?Y; E?C?H?K?M?Q?R?V?W, see Fig. S2),

the size limit of assignments for proteins with just triple

resonance methods seems much larger than any protein that

will likely be ever studied by solution NMR methods.

While the information content of such spectra is suffi-

cient, manual assignment of the spectra to the known

amino acid sequence is extremely tedious for large pro-

teins, and it has been hard to automate, especially for

spectra of large proteins with incomplete data. Many

computer algorithms have been devised (Friedrichs et al.

1994; Hare and Prestegard 1994; Hyberts and Wagner

2003; Leutner et al. 1998; Lukin et al. 1997; Meadows

et al. 1994; Moseley et al. 2001; Olson and Markley 1994;

Oschkinat and Croft 1994; Stratmann et al. 2010;

Zimmerman et al. 1993, 1994, 1997; Zimmerman and

Montelione 1995). See also recent reviews (Billeter et al.

2008; Williamson and Craven 2009; Güntert 2009).

Here we adopt the nomenclature of the AutoAssign

program (Zimmerman et al. 1997; Moseley et al. 2001) to

explain in broad terms common and distinguishing fea-

tures. The general paradigm has been to first assemble

peaks from the triple resonance experiments, and group

these into generic spin systems (GS) that specify the

chemical shifts of various nuclei of a particular residue and

the sequentially previous residue. Next, the GSs are

arranged into sequentially ordered groups (segments),

where there is a unique match in chemical shifts between

successive GSs in a segment. Finally, the segments are

placed on the sequence in such a way as to optimize some

scoring function based on amino-acid residue chemical

shift statistics, such as shown in Fig. S2. A common theme

is that the objective is the single best assignment according

to some criteria, such as number of residues assigned and

accuracy of agreement between chemical shifts in a GS and

the sequence position to which it is assigned. Thus many

different optimization procedures are employed by the

various assignment programs to find a relatively good

solution. The other common theme is to group GSs into

segments before attempting to place them on the sequence.

The motivation is that any individual GS may be quite

compatible with dozens of sequence positions, whereas a

segment of several GSs may have only a few options, thus

drastically reducing the combinatorial search.

Without making a comprehensive review of automatic

sequential assignment methods, it is worth noting recent

activity in this lively field. The CRAACK program (Benod

et al. 2006) takes the usual input data and forms GSs, but

then its objective is to assign them to residue types and

secondary structure states, rather than assigning them to the

sequence. Other methods aim to assign GSs to the sequence

but employ additional inputs to the problem. For example,

ABACUS (Lemak et al. 2008) uses the usual GSs plus

NOESY cross peaks to help determine sequence separa-

tions in the assignment. NOEnet (Stratmann et al. 2010)

uses largely NOEs plus residual dipolar couplings and

chemical shifts. Xiong et al. (2008) start with a model of

the three-dimensional structure of the protein, perhaps

derived from homology modeling, plus NMR data from

HSQC, TOCSY, and NOESY experiments. From this they

deduce rough residue types and choose from the many

possible NOESY cross peaks those that are consistent with

the residue types and interresidue contacts in the model.

Another issue is the assessment of reliability of the one

or more assignments produced by a method. In ABACUS

(Lemak et al. 2008) the Monte Carlo search for assign-

ments gives the probability of assigning a particular seg-

ment of GSs to a sequence position. The IDA method (Lin

et al. 2006) gives exactly one assignment for a given set of

GSs plus a score reflecting how good the assignment is.

Gaussian perturbations of the rungs (chemical shifts) of the

GSs produce different assignments and different scores, so

an alternative assignment can be associated with a Z-score

relative to the assignment from unperturbed GSs.

Another question is how best to structure the assignment

search. Our earlier program, CASA (Wang et al. 2005),

follows the standard organization of peaks into GSs into

segments, but the subsequent branch-and-bound search for

assignments was carefully structured for speed and

robustness. In PISTACHIO (Eghbalnia et al. 2005) GSs are

associated with tripeptides so that the assignment amounts

to assigning GSs to mutually consistent overlapping trip-

eptides in the given sequence. In GASA (Wan and Lin

2007) the usual sequence of steps (peaks to GSs, GSs to

segments, segments to sequence positions) are overlapped

in order to improve performance. For example, the best

way to link GSs together into a segment is judged by a

score for how well such a segment might fit onto the

sequence. The usual logic for joining GSi to GSj to form a

segment GSiGSj is that (1) the two sets of rungs agree well

enough in terms of numbers of rungs involved and simi-

larity of corresponding chemical shifts, and (2) there is no

other GSk that would equally well form segments GSiGSk

or GSkGSj. Vitek et al. (2005) argue that even though such

a unique link seems too good to be coincidental, one can
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never exclude the possibility that the GS that really follows

GSi in sequence is simply missing from the input data.

Hence they structure the assignment search by breaking the

whole sequence up into smaller non-overlapping windows

and then considering what alternative assignments of GSs

suit each window. Deeper in the branch-and-bound search,

two sequentially adjacent windows having relatively few

alternative assignments can be merged into a larger

window, and so on.

Methods

Here we present a new automatic backbone assignment

procedure, SAGA (sequential assignment of GSs algo-

rithm). The inputs are the amino acid sequence of the

single polypeptide chain and at least some of the customary

triple resonance peaks. Additional information is not used,

such as NOEs, secondary structure, or homology models.

As explained in detail below, the first step is to assemble

the spectral data into GSs, as do most assignment pro-

grams. However, unlike most methods and our earlier work

(Wang et al. 2005), the GSs are not subsequently assem-

bled into apparently unambiguous segments, as suggested

by Vitek et al. (2005). The second step is to assign the GSs

to the sequence. Most methods define a quantitative mea-

sure of quality for an assignment and then use stochastic

global optimization methods such as Monte Carlo or sim-

ulated annealing to search for the single best quality

assignment. The second unusual feature of SAGA is that

the user instead defines criteria that an acceptable assign-

ment satisfies, and the output consists of a relatively broad

sampling of perhaps very many acceptable assignments. In

this way, we hope to learn what parts of the assignment are

known with high confidence, what parts may be the result

of slowly interconverting conformations, and what features

suggest the need for scrutiny of the input data or additional

experiments. In particular, one of the acceptability criteria

is a lower bound on the fraction of the GSs that are

assigned to residues. This allows one to focus only on

rather complete assignments in the case of high-quality

data, or to see what parts of the assignment have been well

established at an early stage of a study where, e.g., only

half the residues can be assigned. The third unusual feature

of SAGA is that more than one algorithm is provided for

searching for acceptable assignments. While most methods

center around a particular search or optimization algorithm

that works well for at least some test cases, we find that

quite different algorithms are needed for thorough searches

given a small protein and high-quality peak data, as

opposed to broad samplings of assignments given a large

protein with many peaks lost in the noise. The three search

algorithms presented below are based on well-established

general combinatorial methods, such as clique finding,

branch and bound tree searching, and greedy searches.

However, tailoring these general approaches to the back-

bone sequential assignment problem constitutes the fourth

unusual feature of SAGA, and this accounts for SAGA’s

pleasing performance, even on challenging data.

Peaks to GSs

The first step is to assemble the peaks gleaned from several

triple-resonance experiments into data structures called

generic spin systems (GS) (Zimmerman et al. 1997). A GS

consists of the chemical shifts of several atoms in some

unspecified amino acid residue i (intra-residue) and the

sequentially previous residue i-1 (sequential). These

always include the intra-residue HN root, Hi
N and Ni, and

optionally various rungs on the i and i-1 sides for Ca, CO,

and Cb atoms.

One way to input peak information is via NMRPipe-

format (Delaglio et al. 1995) peak-pick lists derived from

corresponding pairs of intra-residue and sequential experi-

ments: HNCA and HN(CO)CA for Ca, HNCACB and

HN(CO)CACB for Cb, and HN(CA)CO and HNCO for CO,

respectively. We require the first pair of experiments so that

the GSs all have at least an intra-residue or sequential Ca
rung. For each available pair of experiments, allowance is

made for a possible uniform additive shift between the two

experiments of no more than 0.1 ppm in HN and 0.75 ppm in

N. Pairs of peaks are considered to match if their (shifted)

HN and N chemical shifts agree within a given tolerance

while the third chemical shifts (e.g. Ca) differ by at least

0.25 ppm. Tolerances in HN and N are varied from 0.005 to

0.03 and from 0.05 to 0.3 ppm, respectively, until the

maximum number of uniquely matched pairs of peaks is

achieved. In this way, each pair of available peak lists pro-

duces a set of so-called Ts, which are GSs having an HN root

and one or both rungs for the intra-residue and sequential

chemical shifts of either Ca, Cb, or CO.

Exploring the same overall shift range and tolerance

ranges used for constructing Ts, the Ca Ts are combined

with the available Cb and then CO Ts, choosing the shifts

and tolerances that give the maximal number of unam-

biguous matches. If a resulting GS has no rungs on either

the intra-residue or sequential side, it is still accepted.

An alternative format for peak information is Sparky

(Goddard and Kneller 2003), where one Sparky file sub-

stitutes for one of the three pairs of NMRPipe files because

the intra-residue and sequential pairings are already spec-

ified by the user through the use of matching tag pairs in

the file. However, the resulting Ts need not always have a

matching i and i-1 rung, due to experimental noise con-

siderations. Missing rungs are denoted by entries larger

than 500 ppm. This input style is especially suited for noisy
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and incomplete data from large proteins, where an inves-

tigator needs to curate peak-pick files by hand. The HN

root chemical shifts are taken to be those of the intra-

residue peak when both peaks are available. Associated

with each T is the common tag specified by the user. Using

Sparky files instead of peak pick lists affords the spec-

troscopist greater control over building GSs. Ts from more

than one Sparky file are joined together into a GS by the

program by matching up their tags, where there must be a

Ca T, and the resulting GS has its HN root. That is, in the

Sparky input mode, the 15N–1H frequencies are not used to

construct GSs, which relieves some of the criteria on the

quality of the input NMR data. In this input mode, the

investigator can also easily assess the precision of the peak

matching. The Sparky program allows hand-adjustment of

the center of the peak-pick positions. After these optimi-

zations are carried out, we find that in properly zero-filled

data, the center of 13Ca peaks can be defined with a

0.1 ppm, 13Cb with a 0.2 ppm and 13CO with a 0.1 ppm

precision, even for data sets of large proteins. The 15N–1H

frequencies data are taken from the Ca T and are kept by

the program for amino acid identification purposes (sig-

nificant for the 15N frequencies of glycyls only), and are

returned at the output stage.

If the GSs are constructed from NMRPipe files, they

don’t have the unique identifier tags seen in GSs built from

Sparky files. As such tags are helpful later in communi-

cating the results to the user, the program automatically

constructs tags for any GSs that lack them.

GSs to matching graph

Only after the GSs are prepared is the sequence considered

at all. This is read from a FASTA format file, where in

addition to the standard 20 single character symbols for

residue types, B is recognized as either D or N, and Z is

recognized as either E or Q. Each GS may occupy residue i

in the sequence if its intra-residue rungs are in agreement

with the chemical shifts expected for the type of that res-

idue, and if its sequential rungs agree with the type of

residue i-1 in the sequence. A GS that fits nowhere in the

sequence is deleted, but most are compatible with multiple

sequence positions. In any case, compatibility of a GS with

a residue is treated as a qualitative yes/no decision, rather

than assigning a quantitative compatibility score.

As in our previous algorithm (Wang et al. 2005), GS

occupancy is based on chemical shift statistics from the

BioMagResBank (Seavey et al. 1991; http://www.bmrb.

wisc.edu). For each atom type in each residue type they

provide the chemical shift a = lower bound, b = upper

bound, l = mean, and r = standard deviation. Then a

chemical shift from a GS rung is in agreement with the

corresponding data bank statistics if it falls in the

interval = [max(a, l–sr), min(b, l?sr)], where by default

s = 4.0 except s = 5.5 for H because of the larger dis-

persion. The user of SAGA can optionally choose other

values for s (see Fig. S2). The data bank values of r
generally are much smaller than the standard deviation for

a uniform distribution over the interval [a,b], so accepting

chemical shifts that are four standard deviations from the

mean is not so permissive as it might seem. In our tests,

however, we used s = 6 for 1HN, s = 6 for 15N, s = 4 for
13Ca, s = 2.5 for 13Cb and s = 3 for 13CO shift ranges,

based on our own experience with assigning spectra of

large proteins.

Each GS is tested for possible occupancy at each

assignable residue position, excluding the N-terminus and

prolines, of course. The chemical shifts of the N and all

available intra-residue and sequential Ca, Cb, and CO

rungs must fall within the corresponding allowed intervals.

The amide proton chemical shift is not considered in

determining occupancy. As a special case, if a GS has an

intra-residue Ca chemical shift less than 50 ppm and no

intra-residue Cb rung, then it must occupy a glycyl residue,

as long as the other sequential rungs match satisfactorily.

Another special case is a GS having an intra-residue Cb
rung less than 20 ppm, in which case it must occupy an

alanyl residue where the sequential rungs match.

SAGA allows the user to optionally include further

constraints on occupancy derived from other experiments.

Each constraint specifies a GS by giving its tag and HN

root chemical shifts. The constraint requires it to occupy

certain residue types and/or certain sequence positions.

Ordinarily this is used to narrow down the list of possible

occupancies already determined, but in exceptional cir-

cumstances, the constraints can completely override them.

Once the possible occupancies of all GSs have been

established, the links between GSs must be determined.

That is, for each GSj, can GSk immediately follow it in the

sequence? One necessary condition is that there is at least

one sequence position i that GSj can occupy, and GSk can

also occupy position i ? 1. The other necessary condition

is that all available intra-residue Ca, Cb, and CO rungs of

GSj must match the corresponding available sequential

rungs of GSk within default tolerances of 0.1, 0.2, and

0.1 ppm, respectively. The user may optionally choose

different tolerances. In the vacuous case of no corre-

sponding rungs between the two GSs, the link is still

considered possible.

Matching graph

One way to visualize the sequence, GSs, occupancies of

GSs, and links between GSs is as a bipartite graph of GS

vertices vs. residue vertices. There may be more or fewer

GSs than assignable residues, depending on factors such as
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the noise floor for detecting peaks, peaks rendered unob-

servable due to conformational exchange broadening, and

possible multiple conformations in slow exchange. Each

assignable residue may be occupied by zero or more dif-

ferent GSs, each GS may occupy at least one residue, and

each GS may be sequentially linked to zero or more other

GSs. Before describing the assignment algorithms in gen-

eral, consider a very simple example shown in Fig. 1.

Suppose the polypeptide chain consists of only seven res-

idues, sequence being ADREPLE, so that five residues are

assignable, i = 2, 3, 4, 6, and 7. Suppose there are four

GSs having tags a, b, c, and d, where a and c have only a

single possible occupancy, b may occupy residues 2 or 6,

and d may occupy residues 4, 6, or 7. As for linking, b may

be followed by c or d, but none follows a. Converting the

initial bipartite graph to an assignment amounts to

removing some of the GS to residue edges until each GS

vertex and each residue vertex has zero or one edge. If

two GSs are thus assigned to sequentially adjacent resi-

dues, there must be a corresponding link from the first to

the second GS. As a shorthand notation for assignments,

write five characters for the five assignable residues,

where ‘‘#’’ means ‘‘unassigned’’ and comes first in the

alphabet. Then there are 35 possible assignments in this

simple example, ranging from ##### to bcad#, of which

five are maximal in the sense that no additional residue

can be assigned. The maximal assignments are ##db#,

b#d##, bcad#, bca#d, and #cabd, the last three being

shown in Fig. 2.

Clique algorithm

There is a very long history of algorithms for bipartite

matching, where the initial graph looks like Fig. 1 with

only the GS vertices and residue vertices joined by dashed

edges between a GS and a residue, but without the directed

edge arrows between residue vertices for sequential

adjacency or the directed edges between GS vertices for

link compatibility. The standard bipartite matching algo-

rithms try to find the largest subset of the dashed edges

such that no more than one edge connects to each vertex, or

given weights associated with each such edge, they try to

maximize the sum of the weights in the final matching

graph (Kuhn 1955; Hopcroft and Karp 1973; Kao et al.

2001). Our sequential assignment problem is qualitatively

different because of the link compatibility feature between

GSs, which excludes certain pairs of dashed edges in the

matching graph. This problem was treated in the equivalent

context of calculating ways to dock a small molecule

(represented as one set of vertices) to a binding site

(represented as another set of vertices), where the edges

correspond to energetically favorable ligand-receptor

interactions, but geometric constraints exclude certain pairs

of edges from the solutions (Kuhl et al. 1984). In that work,

it was shown that for arbitrary pair exclusions, the problem

in general mapped to an NP-complete one, so that any

algorithm would require exponentially increasing computer

time as the problem’s size increased. However, for the

assignment problem the situation is by no means hopeless.

First, if even a non-polynomial algorithm runs fast enough

for practical application to the largest proteins NMR can

handle (around 800 residues), then that is adequate, and we

need not worry about the algorithm’s behavior in the limit

of infinite proteins. Second, in the assignment problem the

pair exclusions are by no means arbitrary, so for that

restricted class of problems there may be a polynomial time

algorithm.

Fig. 1 A simple bipartite assignment graph. Open circles are

assignable residues with corresponding sequence positions, and

arrows between them indicate sequentially adjacent residues. Filled
circles are GSs with links between them shown as arrows. Edges

between GSs and assignable residues are dashed lines

Fig. 2 An example branch-and-bound binary search tree starting with

the bipartite graph in Fig. 1. Each branch involves either adding some

GS to residue assignment, highlighted as a bold dashed line, or

eliminating that edge from the bipartite graph. A bounding condition

requiring that all GSs eventually be used eliminated from further

consideration those tree vertices marked ‘‘bound’’
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As in Kuhl et al. (1984), the matching graph, such as in

Fig. 1, can be transformed into an assignment graph, where

every vertex in the assignment graph represents an edge of

the matching graph, and there are edges between vertices

of the assignment graph whenever the two vertices are

mutually compatible. In this way, we can encode the

constraint that each GS and each residue is used at most

once, and GSs assigned to sequentially adjacent residues

must be link compatible. Then an assignment of the GSs to

the sequence corresponds to a clique of the assignment

graph, where a clique is defined to be a maximal, com-

pletely connected subgraph.

More specifically, the transformation of the matching

graph into the assignment graph is quite straightforward,

but the assignment graph tends to be rather large. If GSj

can occupy mj residues in the sequence, the assignment

graph has
P

j mj ¼ k vertices and has nearly k(k–1)/2 edges

because assigning one GS to a particular residue is com-

patible with most other assignments of another GS to its

possible residues. There are a number of different general

clique finding algorithms available, and we used that of

Bron and Kerbosch (1973), which performs well for large

graphs. Without going into the intricate details of the

algorithm, we did not attempt to find all cliques, as that

would include many small ones, corresponding to few

assigned GSs. Instead, we used the option to guide the

algorithm’s branch-and-bound search for cliques toward

those that would be at least as large as the largest so far

found, and in the end we retain only the ten largest cliques.

Converting a clique into an assignment involves nothing

more than assigning the GS of each vertex to the residue

for that vertex, and then automatically each GS and each

residue is used at most once, and sequentially adjacent

assigned residues are paired with link-compatible GSs.

Greedy assignment algorithm

One standard paradigm for solving combinatorial problems

is the so-called greedy approach, where the best available

choice is made at each stage according to some criterion

regardless of the ultimate consequences, and the choice at

an earlier stage is never revised. Obviously there is no

guarantee that the best solution will be found, but it is a fast

and reliable way of finding a fairly good one, even in the

face of a vast number of possibilities. This general

approach has long been applied to many different combi-

natorial or discrete optimization problems, so it is dis-

cussed in many standard textbooks (Parker and Rardin

1988). To apply the greedy approach to a particular class of

problems, one must specify what constitutes a choice and

how to measure the quality of a choice. How well it per-

forms on that class of problems depends critically on these

two definitions.

For the sequential assignment problem, the starting

point amounts to a bipartite graph such as Fig. 1, where

there are many edges (shown as dashed lines) between GS

vertices and the residue vertices they may occupy. Even if a

GS has only one such edge to a residue that has no alter-

native edges, the final assignment might not involve that

edge. The definition of a choice in our tailored greedy

algorithm amounts to selecting one such edge, marking it

as ‘‘required’’ (shown as a bold dashed line in Fig. 2), and

then simplifying the graph by deleting any alternative

edges from the GS and its required assigned residue. In

Fig. 2, different choices are illustrated as the right-hand

branches in the tree.

The crucial second definition is a measure of how good a

choice is. A good choice amounts to assigning some GS to

a residue where the GS to residue compatibility is rela-

tively certain, and where there are adjacent residues which

have been or could be assigned to other GSs that link

together relatively certainly to form a contiguous assigned

segment of the chain. Note that choices involving a residue

near a proline or near a chain terminus tend to be worse

than for a residue in the middle of a five-residue assignable

segment. As a measure of the certainty of assigning GS i to

residue r, we use wi = the total number of intra-residue

and sequential rungs for GSi, all of which must match the

types of residues r and r–1 for any allowed occupancy of

that GS. As a measure of the certainty a link from GSi to

GSj, we use the number of matching rungs available, vi,j.

Then the total score s(i,r) for choosing GS i and residue r

looks at the best combination of link-compatible GSs that

may occupy the previous and subsequent two residues, if

available. In order to favor a choice that extends a segment

having some already assigned residues, let xj,r?1 = 2 if the

GSj to residue r ? 1 edge is required, or 0 otherwise.

sði; rÞ ¼ wi þ max
j; r þ 1

k; r þ 2

m; r � 1

n; r � 2

ðwj þ vi;j þ xj;rþ1 þ wk þ vj;k

þ xk;rþ2 þ wm þ vm;i þ xm;r�1 þ wn þ vn;m

þ xn;r�2Þ

The greedy assignment algorithm is then very simple.

(1) Start with the initial bipartite graph, where no edges are

required. (2) Calculate the score for all edges that are not

required. (3) Generally, more than one edge has the

maximum score. Choose at random one of these. (4) Mark

the chosen edge as required and remove any other edges

from that GS and that residue. (5) If all edges are required,

an assignment has been found. Otherwise, return to step 2.

As a simple example, consider the bipartite graph in

Fig. 1. Suppose wi = 1 for all GSs, and all links are

equally strong, vi,j = 1. Then sðb; 2Þ ¼ sðc; 3Þ ¼ sða; 4Þ ¼
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5 because for each of these edges, the other two are link

compatible to sequentially adjacent residues. In contrast,

sðd; 6Þ ¼ 1 because no other edge could be required that

would have a link compatible GS to a sequentially adjacent

residue. Thus the greedy algorithm first requires c to 3, then

b to 2, and then a to 4. At this point sðd; 6Þ ¼ sðd; 7Þ ¼ 1,

and either can be chosen. In our shorthand notation, the

assignment proceeds from ##### to #c### to bc### to

bca## to either bca#d or bcad#. This sequence of events is

illustrated in the rightmost branch of Fig. 2.

As shown in the results section, for sequential assign-

ment problems involving large proteins and GSs having

many missing rungs, the greedy approach is a recom-

mendable way to explore the different possible assign-

ments. Because of the random selection in step 3, the

different assignments found tend to be a broad sampling of

the possibilities.

Branch-and-bound assignment algorithm

Another combinatorial optimization approach discussed in

standard textbooks (Parker and Rardin 1988) is branch-

and-bound. As illustrated in Fig. 2, the idea is to search all

possibilities arranged like a family tree, starting at the

initial problem (the root) drawn at the top, and working

down the branches toward solutions (leaves of the tree). To

be efficient for a particular class of problems, one must

choose a definition for branching and a test for bounding.

We also choose a depth-first search, as opposed to a

breadth-first search, so that relatively promising branches

are explored downward in search of solutions in case the

full examination of the tree is infeasible.

For the sequential assignment problem, a branching

procedure we have found to be suitable is just the assign-

ment choice used in the greedy algorithm above. Thus a

search tree vertex splits into two children vertices: one

where the graph edge between the chosen residue r and GS

i has been removed, and the other where the i to r

assignment has been required and all other edges to verti-

ces i and r have been removed. The edge that is required

and deleted in the two children vertices of the search tree is

simply the first edge with the maximum score calculated as

in the greedy procedure. This tends to require relatively

promising edges early in the search tree that will lead to

segments of assigned residues. However, the branch-and-

bound exhaustive search tree examines all the possible

choices if time permits, so the ultimate results do not

depend critically on the ordering of edge choices.

The bounding test amounts to an upper bound on the

number of GSs that could possibly be used. Considering

only the GS to residue edges in the bipartite graph, the

whole graph may consist of one or more connected,

mutually disjoint subgraphs. For each subgraph, the

maximal number of GSs that can be assigned is the lesser

of the number of GS vertices and residue vertices. The

upper bound on the whole graph is the sum of these esti-

mates for all the subgraphs. The user specifies the minimal

fraction of GSs that must be assigned to residues in order to

be an acceptable assignment. If the upper bound is less than

that fraction, then further exploration from this vertex in

the search tree is pointless.

Having chosen a branching procedure and a bound test,

the search procedure is very straightforward. (1) Start with

the initial bipartite graph at the root. (2) If the current

search tree node is an assignment (all edges are required),

then test it (step 3) and backtrack (step 4); otherwise apply

the bound test (step 5). (3) If the required fraction of GSs

have been assigned, and this assignment has not been seen

before, add it to the list of solutions. (4) Move up the tree to

the first higher node having an unexplored child, and move

to it for a repeat of step 2. If no such node can be found, the

backtracking has returned to the root, and the search is

complete. (5) If the current node fails the bound test,

backtrack (step 4); otherwise branch (step 6). (6) Branch by

creating two child search nodes by deleting and requiring

the first edge with highest score. Then move to the child

with the required edge for a repeat of step 2.

The search is illustrated on an extremely simple exam-

ple in Fig. 2, where the bounding test requires that 100% of

the GSs must be used in each assignment, and the

branching choices are prioritized by the score described in

the greedy algorithm. As shown in the figure, the right-

hand branches correspond to requiring an edge, while the

left-hand branches eliminate that edge. Note how the

graphs become simpler as more edges are required.

The greedy algorithm would travel down the right side of

the tree always making assignments, whereas the branch-

and-bound algorithm searches the tree more thoroughly

and discovers a third assignment.

The total size of the search tree grows rapidly with

increasing protein size and numbers of GSs, and with

decreasing numbers of rungs on the GSs. For high quality

data on a small protein, it is possible in a reasonable time to

search the whole tree for assignments using nearly all the

GSs. Otherwise, branching continues until a preset time

limit is reached, but this produces a deceptive set of

assignments that all agree on the earlier parts of the tree

simply because the branch-and-bound search did not have a

chance to backtrack very far from the leaves corresponding

to acceptable assignments. In order to get the broader

sampling of the greedy algorithm while also enjoying the

branch-and-bound algorithm’s better local searching for

adequately good assignments, we have combined them. The

allotted time is divided into, say, tenths for ten different

attempts. Each attempt consists of a greedy descent of the

search tree with different random choices of required edges,
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followed by a branch-and-bound search from that vertex in

the tree, enumerating alternative acceptable assignments

until the time for that attempt expires. For challenging

assignment problems, this gives a fairer assessment of the

variety of acceptable assignments where any consistencies

are more likely to be genuine features of the data and less

likely to be artifacts of the search procedure. So either by

the purely greedy algorithm or this combination procedure,

the general result is either some set of acceptable assign-

ments or none when the time limit was too low, or the

demands on fraction of GSs to be used were too high.

Examining multiple assignments

If multiple assignments are found, some subsequent anal-

ysis is helpful to determine which features are consistent

throughout all assignments, and can therefore be given high

confidence. Also when some alternative features are con-

sistently associated with certain other features, such a set

may characterize one of the alternative conformations of

the protein. Consider the three assignments shown at the

bottom of Fig. 2. GS c is always assigned to residue 3, and

GS a is always assigned to residue 4. GS b can be assigned

to either residue 2 or 6. In the former case, GS d can be

assigned to either residue 6 or 7, while in the latter case,

GS d is consistently assigned to residue 7.

For large proteins and incomplete data, SAGA can

sometimes find thousands of different assignments, but

they can be summarized in a readable form in the following

way. Subsets of residues consistently assigned the same

way are given an identifier, starting with 0 for the set of

residues that are assigned consistently in all assignments,

then 1 for the set of residues consistently assigned in the

next largest subset of assignments, and so on. Then for

each residue there are zero or more different GSs assigned

to it, each alternative being marked with an identifier to

show what other residue assignments are consistent with it.

Table 1 shows how the three assignments in Fig. 2 can be

presented, for example. Note that residue R3 is consistently

assigned to GS c, and P5 is consistently unassigned of

course, so they share the assignment identifier 0. However

in 33% of the assignments, residue L6 is assigned to GS b,

but whenever this happens, residue D2 is unassigned, so to

show this correlation, they share the identifier 3.

Software implementation

Saga is written in Python v. 2.6 as a standalone program, and

it should be fairly operating system independent. It has been

tested on several Macintosh computers with Intel CPUs. For

academic use, the program is available from the authors free

of charge, with citation obligation. Industrial users should

contact the University of Michigan Technology Transfer

Office. Most of the tests in the following section were run on

an Apple MacBookPro5 with a 2.4 GHz Intel Core 2 Duo

processor and 2 GB of memory.

Results and discussion

Viability

For a simple but realistic test of SAGA, consider the

favorite test protein, ubiquitin. There are 78 residues in the

chain, of which 74 are assignable. Constructing GSs from a

full set of Sparky files (HNCA, HNCB, and HNCO) pro-

duces 69 GSs, all of which can occupy one or more resi-

dues. The mean number of edges associated with each GS

or residue vertex is 11, so there is nontrivial ambiguity in

even such a high quality dataset for a small protein. The

more traditional approach taken by our earlier CASA

algorithm first forms the 69 GSs into five segments of

sequentially joined GSs, and these are quickly and unam-

biguously placed on the sequence, thereby assigning 69

residues. The single assignment agrees exactly with the

manual assignment. SAGA, however, does not insist on

initially forming segments of GSs. Yet the greedy algo-

rithm finds the same assignment in just 1 min (results not

shown). The branch-and-bound search using 10 random

greedy starts finds 13 different assignments in a total of

2 h. In each of these 13, all 69 GSs were required to be

used, and they differ from the manual assignment mostly

by assigning one or two GSs to residues near the C-ter-

minus, which were unassigned in the manual assignment.

Even in this example of a small protein with high quality

data, the clique algorithm shows how enormous the task is

to examine all assignments. The 69 GSs and the 74

assignable residues correspond to 792 vertices in the

assignment graph, which is much less than 69 9

74 = 5,106 because the GSs are on average compatible

Table 1 Summary of multiple assignments from Fig. 2

Residue GS Identifier %

A1 0 100

D2 b 1 67

D2 3 33

R3 c 0 100

E4 a 0 100

P5 0 100

L6 b 3 33

L6 d 4 33

L6 5 33

E7 d 2 67

E7 4 33
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with only 11 sequence positions. There are only 43356

pairwise exclusions between assignment vertices, so there

are 583908 edges. Even confining the Bron and Kerbosch

combinatorial search to the largest cliques, some 6 million

cliques can be found in 2 h, corresponding to assignments

of 53–64 GSs. Much more time would be required to

search the whole tree of possibilities, including the 69

vertex cliques.

To test the performance of SAGA on a larger protein,

we chose E. Coli Chaperone LolA, with 186 residues, as

deposited in the BioMagResBank (Nakada et al. 2007). We

constructed complete Ca, Cb and CO connectivities for all

163 assignments tabulated. Figure 3 shows that SAGA’s

greedy algorithm achieves an assignment in 10 min,

completely in agreement with literature data.

Commonly, proteins contain areas that can exist in

multiple conformations in solution. Depending on the

timescale of the conformational exchange dynamics, all

cross peaks belonging to the affected NH root will broaden

beyond detection when the process is on the microsecond

timescale. Typically, several residues in sequence or area

will be affected as a group. We simulated this behavior for

LolA by deleting the first 50 assignments from the input. As

Fig. 4 shows, SAGA’s greedy algorithm still performs well.

It is especially pleasing to see that the ‘‘vacuum’’ of the first

50 unassigned residues did not ‘‘attract’’ many GSs from the

proper areas. That was achieved, as explained above, by

emphasizing assignments of several GSs is a row.

If the dynamical process in a certain area of a protein is

very slow, the NMR spectra will show multiple cross peaks

for that area. Again, experience indicates that several res-

idues in sequence or area will be affected as a group. We

simulated this behavior for LolA by giving duplicate GSs

for the sequence 57–72 (shifted as a group in all dimen-

sions by 0.2 ppm). As Fig. 5 shows, SAGA’s greedy

algorithm still performs well overall, and correctly gives

two possible assignments for most of the sequence 57–72.

Our group has worked with proteins that after assign-

ment were found to have areas in two-site slow exchange,

with cross peaks missing for other areas due to

Fig. 3 10 min greedy assignment of 186-residue E. Coli Chaperone

LolA (BMR10078). All Ca, Cb and CO connectivities were given for

the white fields in the first columns. No information was given for the

black fields. White fields in the second columns show SAGA’s

assignments corresponding to the literature assignment. The numbers

in these fields show the fraction of those assignments
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intermediate exchange. We simulated this ‘‘devilish’’ sit-

uation and show SAGA’s performance in Fig. 6. While not

as clean as in Fig. 4, the assignment is still completely

credible. To show the degeneracy in the assignment, we

have represented the sequence with the six NMR-distin-

guishable residue types (See Fig. S2).

Size limits

Having established that the algorithm performs very well in

realistic situations with missing and/or duplicated data, we

tested the size limits of the program. As a large example,

consider maleate synthase G of E. Coli, which contains 723

Fig. 4 10 min greedy assignment of 186-residue E. Coli Chaperone

LolA (BMR 10078). All Ca, Cb and CO connectivities were given for

the white fields in the first columns. No information was given for the

black fields. White fields in the second columns show SAGA’s

assignments corresponding to the literature assignment. Black fields in

the second or third columns show alternative assignments. The

numbers in these fields show the fraction of those assignments

Fig. 5 10 min greedy assignment of 186-residue E. Coli Chaperone

LolA (BMR 10078). All Ca, Cb and CO connectivities were given as

described in the legend to Fig. 3. Duplicate GSs were given for the

grey area, residues 57–72 (shifted as a group in all dimensions by

0.2 ppm and labeled with numbers 257–272)
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residues. The original spectra were assigned using a com-

bination of 4D and 3D NMR methods (Tugarinov et al.

2002), and the assignment list was deposited as BMR 5471.

Of the 723 residues, 692 are possibly assignable, and an

artificially complete set of three Sparky files based on the

BMRB entry produced 654 GSs, 615 of which have 3-rung

connectivities, 53 have two-rung connectivities and 5 have

1-rung connectivities.

Using the greedy algorithm, we find in 60 min virtually

complete assignments that for the most part agree with the

literature assignments (see Fig. 7). Interestingly, the pro-

gram generated also several stretches of alternative

assignments that comprise more than several residues in a

row and are hence worth considering. This illustrates the

advantage of the program: it will point out areas that are

assigned with confidence, but also areas for which addi-

tional experiments need to be carried out (e.g. NOESY

connectivities or residue-specific labeling), or which

should not be used in subsequent work.

Using SAGA to test and extend partial assignments in

large proteins

We used SAGA to assess the viability of partial hand

assignments of large proteins, using original Sparky peak

pick files. As explained in methods, these files were hand-

curated to remove noise and sidechain peaks, to add an

occasional missed cross peak, and were synchronized

between the six triple resonance spectra. That is, HCN

cross peaks at the same (H,N) coordinates were given the

same root name on authority of the expert spectroscopist.

In the case of a 501-residue construct of the Hsp70

chaperone DnaK from Thermos Thermophilus, (called

TTH-501 hereafter), there are 474 assignable residues and

405 GSs. The hand assignments were based on 351 GSs

with Ca-matches, 88 GSs with Cb-matches and 275 GSs

with CO-matches. These combined into 82 GSs with 3-

rung connectivities, 194 GSs with 2-rung connectivities,

and 80 GSs with single-rung connectivities. A 10 h greedy

run produced 30 assignments with probabilities between 1

and 0.2. The complete results are shown in Fig. 8, which

shows that most of the hand assignments are indeed

‘‘found’’ by the program. However, there are many more

valid assignments, and the question arises how one would

go about picking the ‘‘correct’’ ones if one does not know

the answer. We proceeded as follows. (1) We keep all

assignments of probability 0.6 or higher. (2) We discard all

assignments with probability less than 0.2. (3) Of the

remaining set, we only retain those GSs that are assigned in

stretches of 3 or more residues. (4) The results are checked

for mutual compatibility. (5) If the same stretch of linked

GSs occurs more than once, we retain the one that occurs in

a longer overall stretch. The results of this editing are

shown in Fig. 9. The retained assignments are very com-

patible with the hand assignment, but several other credible

assignments are found as well.

SAGA clearly discloses the risk of obtaining partial

assignments without confirming them with further scrutiny,

such as 13C lineshape comparisons in the different spectra,

independent assignment experiments at different tempera-

ture or pH, extra information from selective labeling, 4D

methods (Tugarinov et al. 2002), NOE connectivities and

Fig. 6 30 min greedy assignment of 186-residue E. Coli Chaperone

LolA (BMR 10078). All Ca, Cb and CO connectivities were given as

described in the legend to Fig. 3. Duplicate GSs were given for the

grey area, residues 57–72 (shifted as a group in all dimensions by

0.2 ppm and labeled with numbers 257–272). The amino acid

sequence is represented as an ‘‘NMR’’ sequence, in which indistin-

guishable residue types have been collected (A = A; G = G; P = P;

S?T = S; D?F?I?L?N?Y = D; E?C?H?K?M?Q?R?V?W

= E. See Fig. S2)
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HNCAHN experiments (Frueh et al. 2009). For TTH-501,

the hand assignments were verified from triple resonance

experiments at different pH, from assignments from a

subdomain (Revington and Zuiderweg 2004), and with

NOE experiments before being used in structural studies

(Revington et al. 2005).

In the case of the 386-residue nucleotide binding domain

of the chaperone Hsc70, we have a hand assignment of just

206 GSs for 374 assignable residues. The hand assignments

were based on 147 GSs with Ca-matches, 130 GSs with

Cb-matches and 134 GSs with CO-matches. These com-

bined into 110 GSs with 3-rung connectivities, 30 GSs with

2-rung connectivities, and 21 GSs with single-rung con-

nectivities. SAGA produced 162 assignments in 2 h, 88 of

which had probabilities of 0.5 or larger. Sorting these by

the largest number of mutually compatible assignments

following the rules described above for TTH-501, we

obtained the result as shown in Fig. 10. It shows that the

great majority of the hand assignments are reproduced.

Several are not, but that should be no surprise, since the

sequence is quite degenerate, which is obvious when

written as a sequence of NMR-distinguishable residues as

is shown in Fig. S2. In addition, when rungs are incom-

plete, the degeneracy is even higher, accounting for some

of the apparent type-violations in Fig. 10. Nevertheless, we

trust the hand assignments, since these were based on

several complete datasets from different samples and

contain 13C lineshape matching information. The NMR

spectra contained 101 additional GSs that were not be

assigned by hand. We let SAGA place these in a 2-h greedy

run after we constrained the original hand assignments to

their sequence positions. We used larger matching

Fig. 7 60 min greedy assignment of Maleate Synthase G of E. Coli,
which contains 723 residues. The original spectra were assigned using

a combination of 4D and 3D NMR methods (Tugarinov et al. 2002)

and the assignment was deposited as BMR 5471. Of the 723 residues,

692 are possibly assignable, and an artificially complete set of three

Sparky files based on the BMRB entry produced 654 GSs, 615 of

which have 3 rung connectivities, 53 have two-rung connectivities

and 5 have 1-rung connectivities. GSs with connectivities were given

for the white fields in the first columns. No information was given for

the black fields. White fields in the second columns show SAGA’s

assignments corresponding to the literature assignment. Black fields in

the second or third columns show alternative assignments. The

numbers in these fields show the fraction of those assignments
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tolerances and larger type tolerances in this additional run.

The resulting assignment is shown in Fig. 11. Of the 101

additional GSs, 46 could be placed with a confidence of 0.5

or better. Clearly, some of these could not ever have been

found by ‘‘hand’’: Consider GS X954, which is placed with

100% confidence on V18. This GS has no Ca(i) or Cb(i)

rungs, while its CO(i) rung is unmatched, because G19

does not show any CO(i-1) rungs. SAGA, however, placed

GS X954 on the basis of its (unmatched) i-1 rungs that put

it next to a residue of that type.

Using the program to assess experimental assignment

strategies

Having established the reliability of the program, we assess

here the inverse question: how complete do NMR data sets

need to be in order to be uniquely assignable? As is shown

in Figures S3 and S4, there is no real need for CO con-

nectivities, even for assigning the resonances of a 381-

residue protein. This substantiates the assertion in the

introduction that, theoretically, two sets of complete rung

connectivities are sufficient to uniquely sequentially link

the GSs of proteins, maybe even larger than 1,000 residues.

The loss of the CO-rungs does not affect the placement of

the GSs on the sequence, as the CO chemical shifts have

almost no predictive value for residue type (see Fig. S2).

However, as Fig. S5 shows, one cannot rely on just

complete Ca and CO for an assignment of a 20 kDa protein

or larger. The reason, of course, is that the Ca resonance

statistics are not sufficiently restrictive to allow placement

of the GSs on the sequence (see Fig. S2). Figure S5 also

shows how well SAGA performs: it finds many feasible

Fig. 8 10 h greedy assignment of a 501-residue construct of the

Hsp70 chaperone DnaK from Thermos Thermophilus, with 474

assignable residues and 405 GSs. The hand assignments were based

on 82 GSs with 3-rung connectivities, 194 GSs with 2-rung

connectivities, and 80 GSs with single-rung connectivities. The

connected GSs were given for the white fields in the first columns. No

information was given for the black fields. White fields in the second

columns show SAGA’s assignments corresponding to the literature

assignment. Black fields in the second and following columns show

alternative assignments. The numbers in these fields show the rank

order of those assignments, with 0 being the best. The amino acid

sequence is represented as an ‘‘NMR’’ sequence, in which indistin-

guishable residue types have been collected
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assignments, as it should, and in such a case could be used

to design experiments to resolve the ambiguities.

Figures S6 and S7 show that it is not the Cb connec-

tivities, but the Cb resonance frequencies that are needed to

place the GSs on the sequence. Even for a large protein of

381 residues, the assignments are still virtually complete

without Cb(i-1) information. This is encouraging: the Cb(i-

1) connectivities are the most difficult to obtain for any

protein for sensitivity reasons, and are the first ones to be

incomplete for large proteins (see above for TTH-501).

Possible future extensions of the program

The NMR spectroscopist has also available cross peak

intensity and 13C resonance line width information. Both

Sparky and NMRPipe provide this information in the peak

Fig. 9 10 h greedy assignment of a 501-residue construct of the

Hsp70 chaperone DnaK from Thermos Thermophilus, as in Fig. 8, but

edited as described in the text. The connected GSs were given for the

white fields in the first columns. No information was given for the

black fields. White fields in the second columns show SAGA’s

assignments corresponding to the literature assignment. Black fields in

the second or third columns show alternative assignments. The middle

numbers in the these fields show probabilities of the assignments. The

last number gives the number of rung connectivities between the GSs.

The amino acid sequence is represented as an ‘‘NMR’’ sequence.

Stretches of GSs that occur more than once in this assignment are

indicated in bold italic
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Fig. 10 120 min greedy check of an unpublished, partial hand

assignment of the 386-residue nucleotide binding domain of human

Hsc70 (206 GSs/374 assignable residues). The hand assignments are

based on 110 GSs with 3-rung connectivities, 30 GSs with 2-rung

connectivities, and 21 GSs with single-rung connectivities (they are

given in the white fields in the left columns). Tolerances used: Ca, Cb
and CO range, 2.5, 3 and 3 sigma, respectively; Ca, Cb and CO match

0.1, 0.2 and 0.1 ppm respectively. White fields in the second columns

show SAGA’s assignments corresponding to the literature assign-

ment. Black fields in the second or third columns show alternative

assignments. The middle numbers in these fields show the fraction of

those assignments. The last number gives the number of rung

connectivities between the GSs. The amino acid sequence is

represented as an ‘‘NMR’’ sequence. Duplicate assignments have

been removed on the basis of frequency and/or number of connecting

rungs, except for D198 (italic)

J Biomol NMR (2010) 46:281–298 295

123



Fig. 11 Improvement of the assignment of Hsc70 NBD (386

residues). The 206 hand assigned GSs were constrained to their

positions, and an additional 101 GSs present in the spectra (mostly

with incomplete rungs) were allowed to fill in the open stretches using

default tolerances (see Methods). 46 of these were placed with high

confidence. They are shown in the grey fields. The middle numbers in

the fields show the fraction of those assignments. The last number

gives the number of rung connectivities between the GSs. Duplicate

assignments have been removed on the basis of frequency and/or

number of connecting rungs. The final result is the assignment of 249

out of the 374 assignable residues, based on 120 GSs with 3-rung

connectivities, 37 GSs with 2-rung connectivities, and 28 GSs with

single-rung connectivities
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pick tables. Currently, the Sparky input mode of SAGA

already accepts intensity data. In future enhancements of

the program, we envision using this information to weigh

against assignments that place GSs of very different

intensities next to each other. This is to encapsulate the

common knowledge that intensity differences in (a single

class of) triple resonance spectra are due to dynamical

processes, which, as argued before, often occur in stretches

rather than at isolated residues. 13C-line width differences

are also mostly determined by dynamics, and can poten-

tially distinguish between correct and wrong GS linkages

even when the chemical shifts are identical. Elegant com-

puter-assisted hand-assignment programs such as XEASY

have long incorporated an easy visualization of this

parameter (Bartels et al. 1995). Coding it into SAGA will

be achieved in future versions, and will likely improve the

reliability of GS linkages where only few rungs are

available.

Conclusions

SAGA is a versatile program for automatic sequential

assignment that can handle not only small proteins with

high quality data, but even the largest feasible proteins with

realistic, flawed data. No single search algorithm is optimal

for all datasets, so the branch-and-bound search gives a

very thorough search on rather unambiguous data, while

the greedy search produces very useful results on large

proteins with lower quality data. In real applications, many

different assignments satisfy reasonable acceptance crite-

ria, so SAGA summarizes them all, highlighting consis-

tently assigned residues, seldom assigned residues, and

different alternative assignments for parts of the polypep-

tide chain.
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